Electricity and Magnetism, Exam 1, 18/02/2021

3 questions, 55 points

Write your name and student number on each answer sheet. Use of a calculator is allowed. You may make use of the book and the provided formula sheet. The same notation is used as in the book, i.e. a bold-face \mathbf{A} is a vector, $\hat{\boldsymbol{x}}$ is the unit vector in the x -direction, and T is a scalar.
In your handwritten answers, remember to indicate vectors (unit vectors) with an arrow (hat) above the symbol.

Submit a pdf of the handwritten sheet of paper with your answers (use a separate sheet for each question!) to the corresponding assignment in the Nestor Exam environment.

1. Mathematical tools and techniques
(a) (5 points) Calculate the divergence of $\mathbf{v}=\left(\cos \theta / r^{2}\right) \hat{\boldsymbol{r}}+(r / \sin \theta) \hat{\boldsymbol{\theta}}+(r \cos \theta \sin \phi) \hat{\boldsymbol{\phi}}$
(b) (5 points) Calculate the curl of $\mathbf{v}=s\left(2+\sin ^{2} \phi\right) \hat{\boldsymbol{s}}+s \sin \phi \cos \phi \hat{\boldsymbol{\phi}}+3 s z \phi \hat{\boldsymbol{z}}$
(c) (5 points) Give an example of a two-dimensional vector field (in the x, y plane) with positive divergence and a non-zero curl. Provide the formula of the vector field, explicitly calculate the divergence and curl. Bonus question (+2) if you have time left: make a sketch of the field.
(d) (5 points) Find the volume and total surface area of a thick spherical shell with inner radius a and outer radius $2 a$, through integration.
2. Circles and spheres
(a) (5 points) Three small positive charges $(+q,+2 q,+3 q)$ are enclosed by three closed surfaces $\left(S_{1}, S_{2}, S_{3}\right)$, as shown in the figure. The net electric flux through S_{1} is Φ_{E}. What is the net electric flux through S_{2}, in units of Φ_{E} ?

(b) (5 points) Calculate the divergence of $\mathbf{v}=\frac{1}{2 r^{2}} \hat{\mathbf{r}}$.
(c) (10 points) Find the electric field at an arbitrary point P on the central axis between two circular loops. The upper loop has radius r, the lower loop radius $r / 2$, and their distance is z. The top (large) loop carries a uniform line charge q per unit length, the bottom (small) loop carries a total charge of $2 q$.

3. Charges, cubes and lines
(a) (5 points) Four charges are positioned on the corners of a cube with size d, as in the figure on the right. The two charges next to each other on one side of the cube each have charge $+q$, the two others each have charge $-q$. What is the electric field (magnitude and direction) in the center of the cube?
(b) (5 points) Two charges q sit at the neighbouring corners of a cube with size d, as in the figure on the right. What is the flux of \mathbf{E} through the shaded side? Explain how you found your answer.
(c) (5 points) Two charges $+q$ and $-q$ are located along the x -axis at points that are equidistant from the origin, as shown in the figure. Point P and the two charges form an equilateral triangle (all sides the same length a). What is the electric field direction and magnitude at point P on the y-axis?

The End

